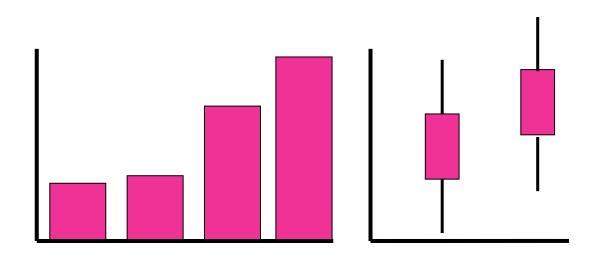
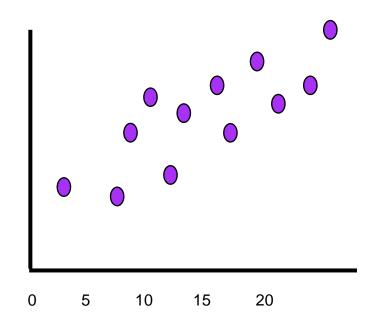
Linear Regression

Questions and Announcements?

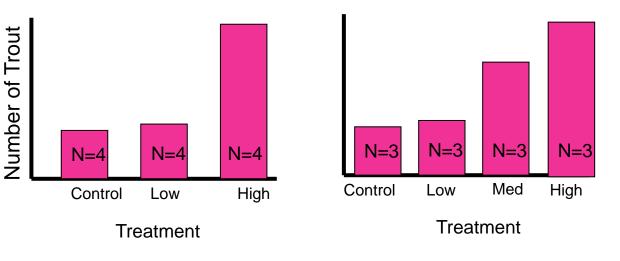
- T-TESTS & ANOVA
- Differences between groups
 - Predictor is a Factor = Categorical
- Response variable = Continuous
- **Graphs:** Boxplots, bar charts, etc.
- Linear Regression
- Relationship between continuous variables
- Develop a predictive relationship
- Graphs: Scatterplots



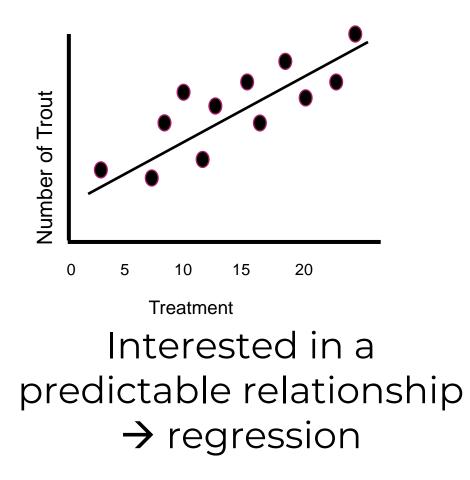


CONTRAST ANOVA VERSUS REGRESSION

<u>12</u> Experimental Units (e.g., streams): How allocate these among treatments?



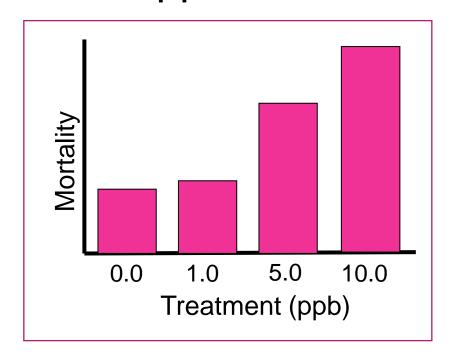
Interested in a specific treatment \rightarrow ANOVA



ANOVA VERSUS REGRESSION

Must decide before start of experiment

Trout are sensitive to Cu Research Q: Is 5 ppb safe?

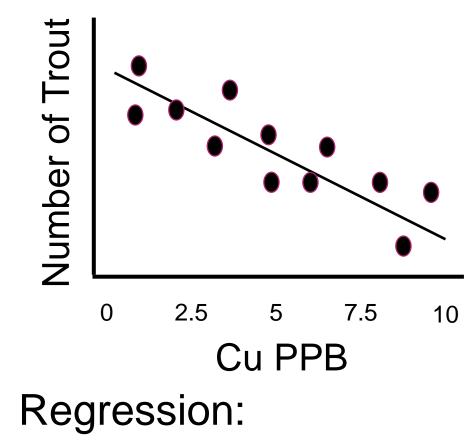


ANOVA: N=6 for each treatment

ANOVA VERSUS REGRESSION

Must decide before start of experiment

Trout are sensitive to Cu Research Question: What conc. Kills 50% of trout?



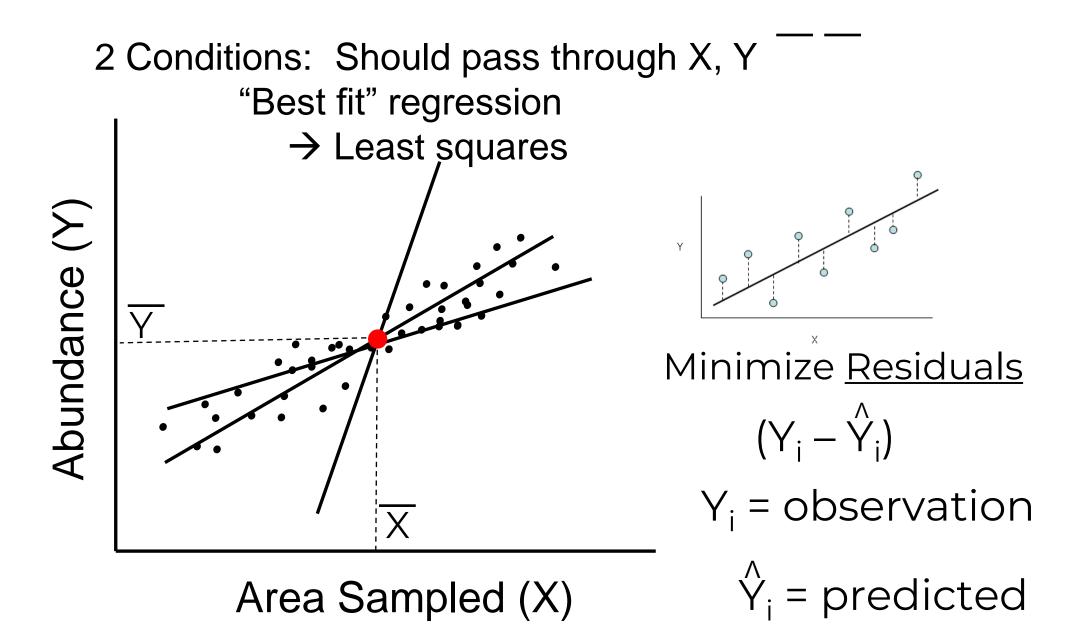
Each tank gets unique Cu concentration Does not require strict "replication" Ensure cover range of x-values -don't "clump" them

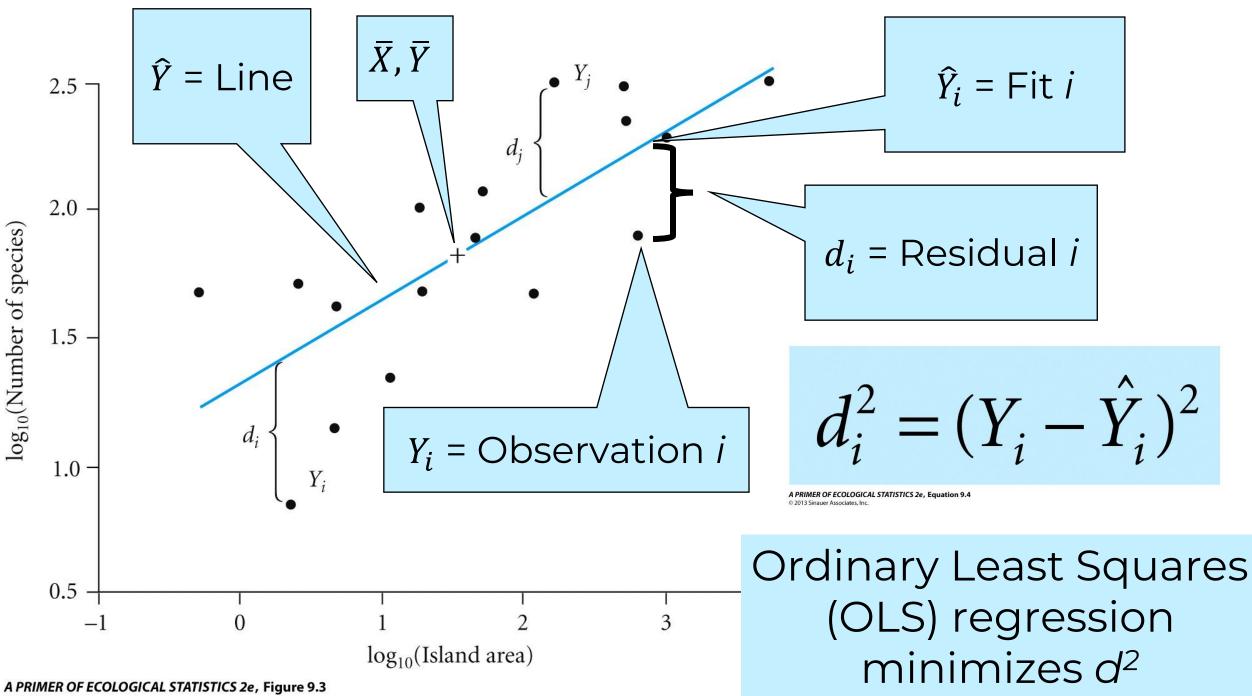
Linear Regression

- A <u>linear</u> relationship between a dependent variable (Y) and an independent variable(s) (X)
 - → Implicit: X <u>causes</u> Y (not simply correlation)
- Dependent, independent <u>should</u> be obvious:

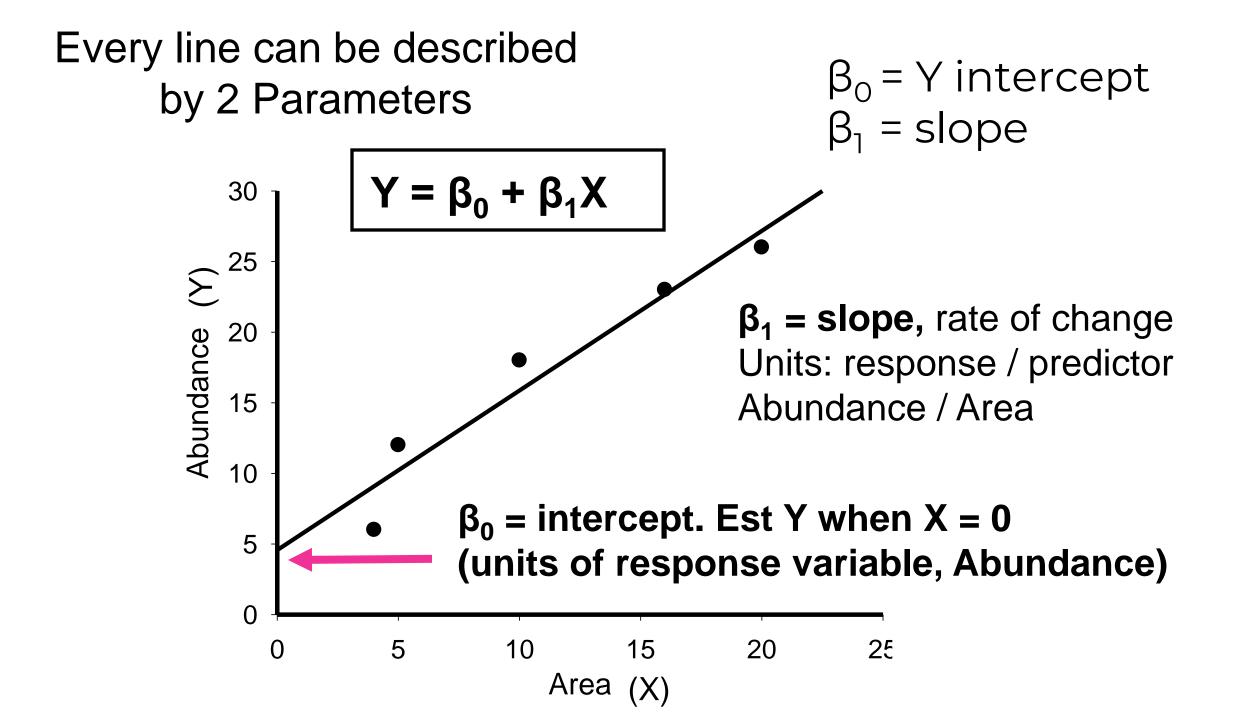
 Island area and number of species
 Food quality and # of offspring
 Predator abundance and prey abundance (??)
- Make predictions:
 Given X → predict Y
 Given Y → predict X (inverse prediction)

Goal: Find the best straight line through a set of points





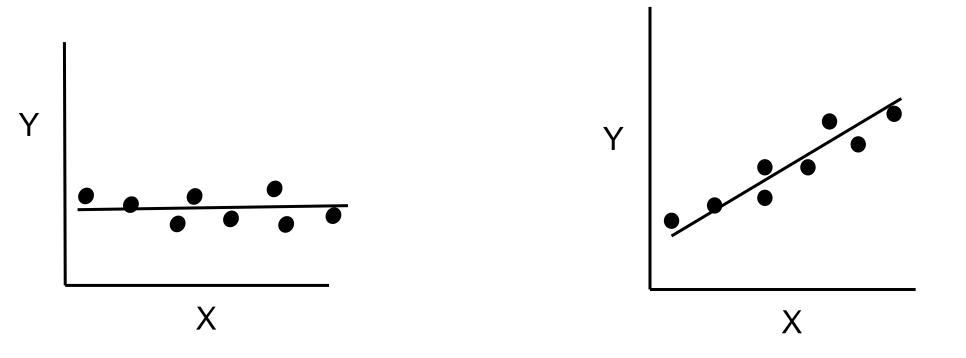
© 2013 Sinauer Associates, Inc.



Hypothesis Tests with Regression
→ Is the relationship significant?

\Box_1 = Regression Coefficient

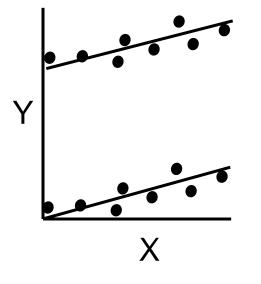
• Slope Null hypothesis: $\beta_1 = 0$, no relationship • Alternative hypothesis $\beta_1 \neq 0$, IS a relationship



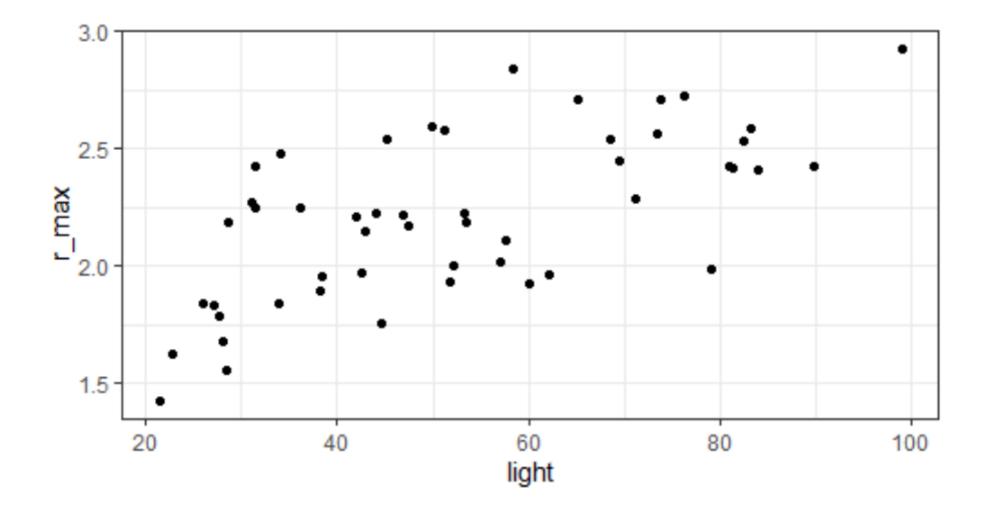
Hypothesis Tests with Regression

 \rightarrow is the Y-intercept = 0?

- Intercept = expected value of Y when X = 0
- Intercept Null hypothesis: $\beta_0 = 0$
- Alternative hypothesis $\beta_0 \neq 0$
- Often, not really interested in Intercept
- Have to pick a value, and 0 is as good as any other

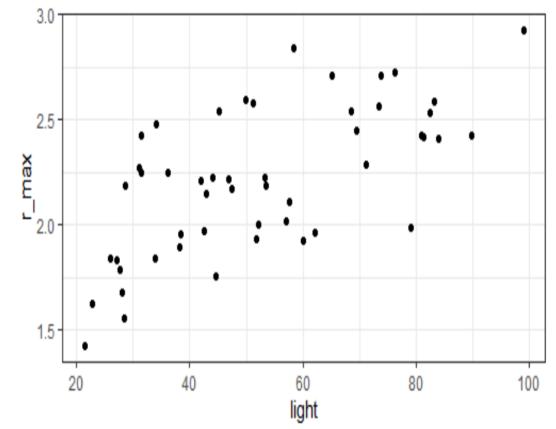


Example: Does Light intensity influence plant growth?



Example: Does increasing light intensity affect plant growth?

- 1. Plot data
- 2. Fit lm()
- 3. ANOVA Table (β_1 Hypothesis)
- 4. summary() of model fit
- 5. Linear Equation
 - 1. Predictions



Fit lm() and ANOVA table

- Fit_lm < lm(r_max ~ light, data = plant_light)</pre>
- Check Assumptions (later)
- anova(fit_lm)

```
Analysis of Variance Table
```

```
Response: r_max

Df Sum Sq Mean Sq F value Pr(>F)

light 1 2.5338 2.53380 35.527 2.881e-07 ***

Residuals 48 3.4234 0.07132

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVA interpretation: β_1 only

We reject the null hypothesis and conclude that the slope (beta_1) is not equal to 0 (F_{1.48} = 35.5, p < 0.001)

```
Analysis of Variance Table

Response: r_max

Df Sum Sq Mean Sq F value Pr(>F)

light 1 2.5338 2.53380 35.527 2.881e-07 ***

Residuals 48 3.4234 0.07132

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

summary(fit_lm)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.625210 0.105377 15.42 < 2e-16 ***

light 0.011167 0.001874 5.96 2.88e-07 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.2671 on 48 degrees of freedom Multiple R-squared: 0.4253, Adjusted R-squared: 0.4134

F-statistic: 35.53 on 1 and 48 DF, p-value: 2.881e-07

summary(fit_lm)

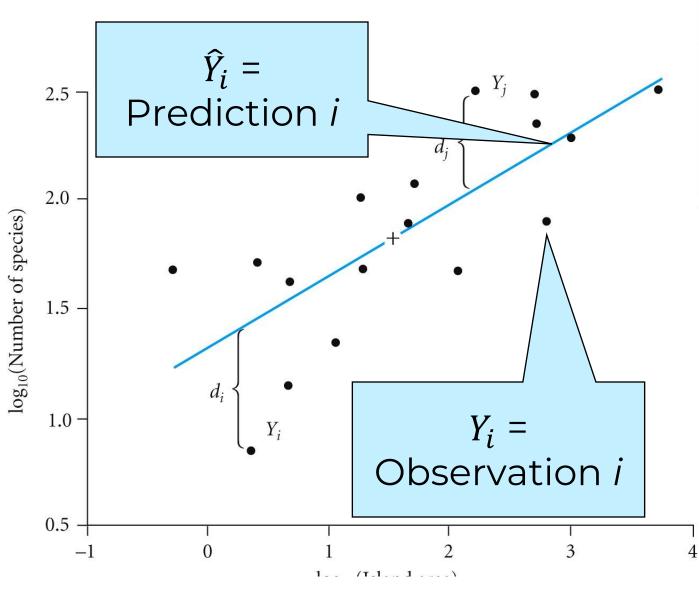
Coefficients:							
	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	1.625210	0.1	105377		15.42	< 2e-16	***
light	0.011167	0.0	001874		5.96	2.88e-07	***

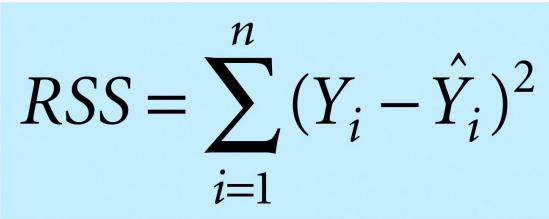
We reject both the null hypotheses and conclude that the intercept is not equal to zero (t = 15.42, p < 0.001) nor is the regression coefficient (beta_1) equal to 0 (t = 5.96, p < 0.001).

Residual standard error: 0.2671 on 48 degrees of freedom Multiple R-squared: 0.4253, Adjusted R-squared: 0.4134

Adjusted R² = 0.4134; model explains 41% of the variation in the data

Predictive ability increases with decreasing Residual Sum of Squares (RSS)



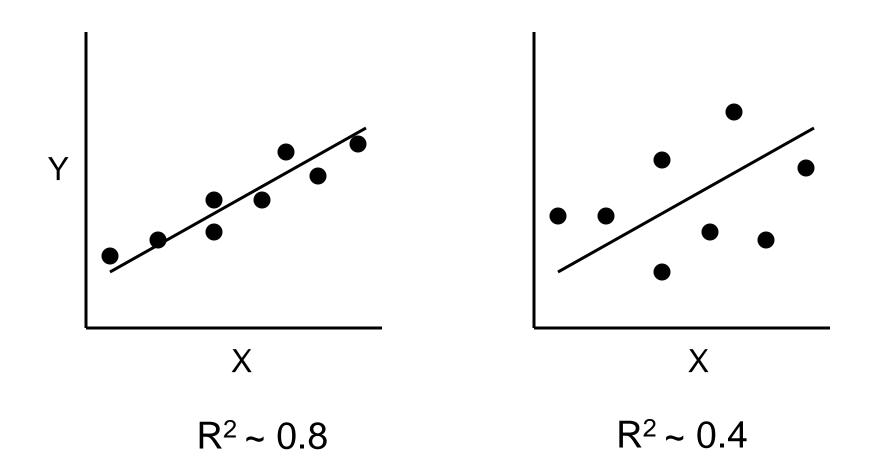


A PRIMER OF ECOLOGICAL STATISTICS 2e, Equation 9.5 © 2013 Sinauer Associates, Inc.

OLS tries to minimize RSS Small RSS = Good predictive ability → high R²

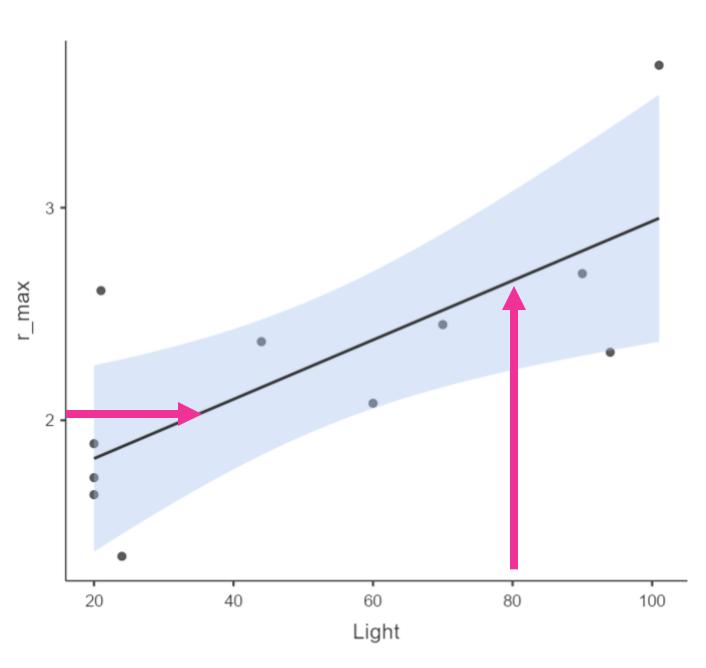
Closer the points are to the line, higher R² value

Visualization tool: <u>https://demonstrations.wolfram.com/VisualizingRSquaredInStatistics/</u> Change ρ value to increase/decrease R²



Estimate values

- Estimate response (\hat{Y}) for unmeasured levels of predictor (80W)
- Estimate predictor for future response measurements (2.0)



Equation of the line

Coefficients: Estimate Std. Error (Intercept) 1.625210 0.105377 light 0.011167 0.001874

- Estimate = the coefficient value
- Write out the equation of the regression line
- Y = $\beta_0 + \beta_1 X$
- $\beta_0 = 1.63$; $\beta_1 = 0.01$; Y = r_max; X = Light
- R_max = 1.63 + 0.011 * Light

Using equation, Estimate value

- R_max = 1.63 + 0.011 * Light
- How much growth would you expect with an 80W bulb?

Using equation, Estimate value

- R_max = 1.63 + 0.011 * Light
- How much growth would you expect with an 80W bulb?
- $R_{max} = 1.63 + 0.011 * 80$
- = 2.51

Using equation, estimate value

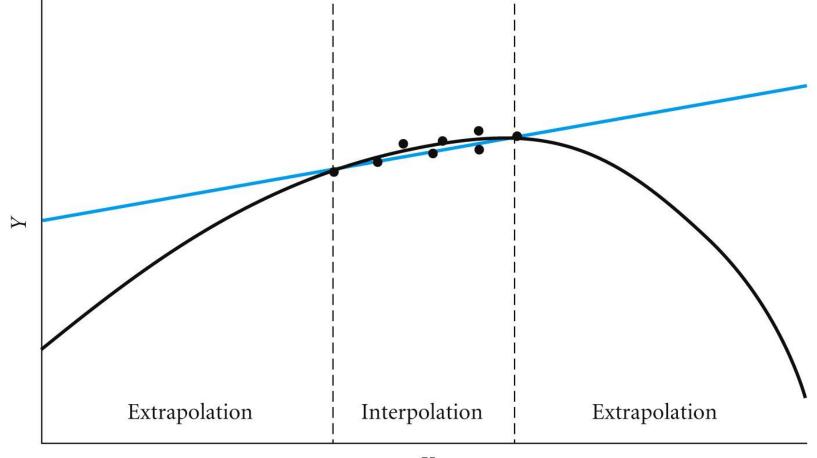
- R_max = 1.63 + 0.011 * Light
- Measured a plant that grew 1.9, what bulb was used?

Using equation, Estimate value

- R_max = 1.63 + 0.011 * Light
- Measured a plant that grew 1.9, what bulb was used?
- Re-arrange equation
- •(R_max 1.63) / 0.011 = Light

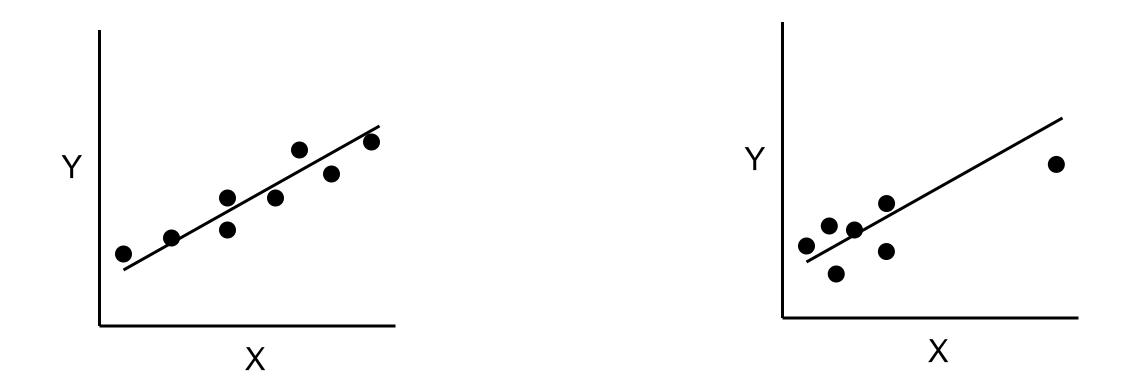
$$(1.9 - 1.63) / 0.011 = 24.5$$

Interpolation Vs. Extrapolation



A PRIMER OF ECOLOGICAL STATISTICS 2e, Figure 9.2 © 2013 Sinauer Associates, Inc.

Range of X-values should be ~ uniform

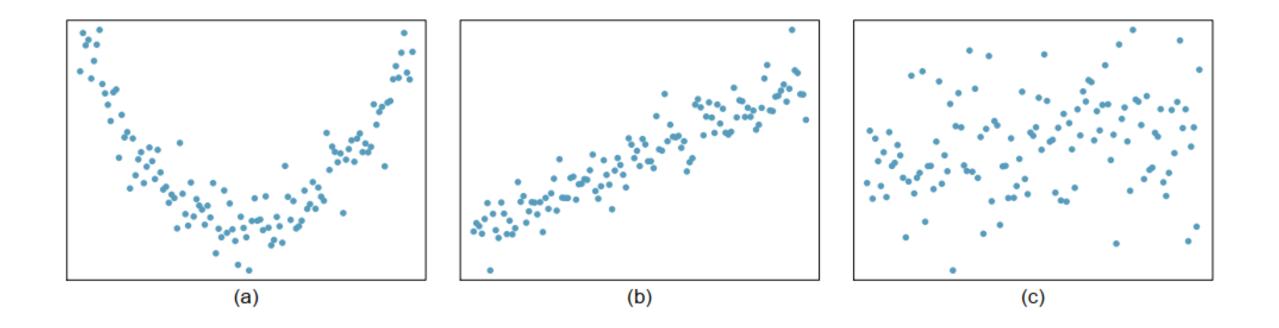


Assumptions

- 1. Linear Model is correct
 - Check for non-linear pattern in scatter plot
- 2. X variable accurately measured
- 3. For X value, Y's are independent with normally distributed errors
 - Residual vs. Fitted Plots
- 4. Variances are constant along regression line
 - Points are approx. Uniform distance from regression line

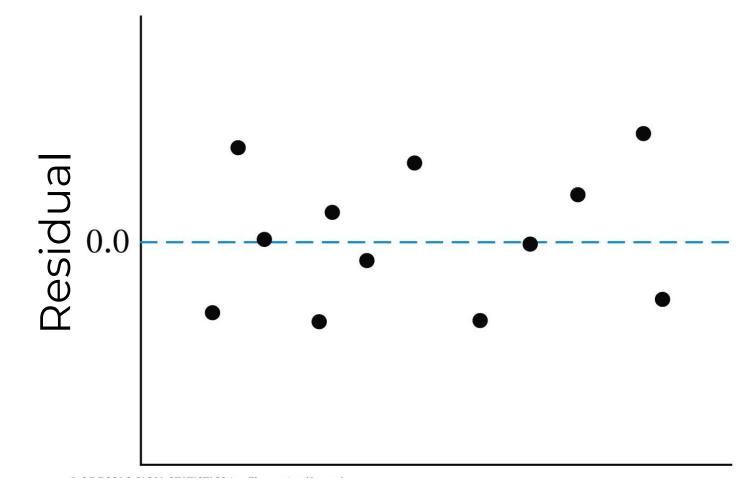
Linear Model (Assumption 1)

Make a scatter plot Which ones are linear?

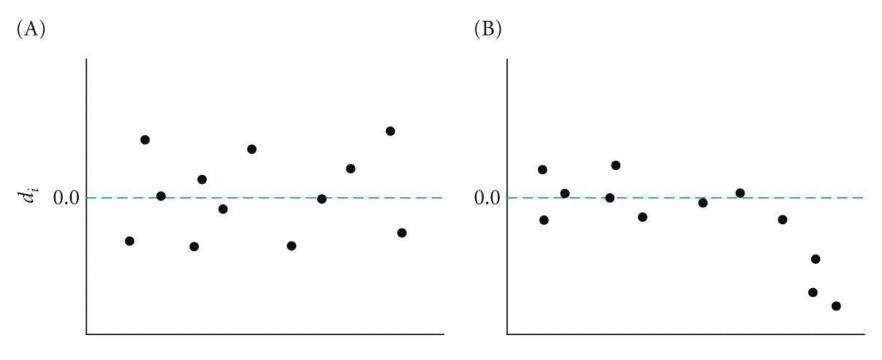


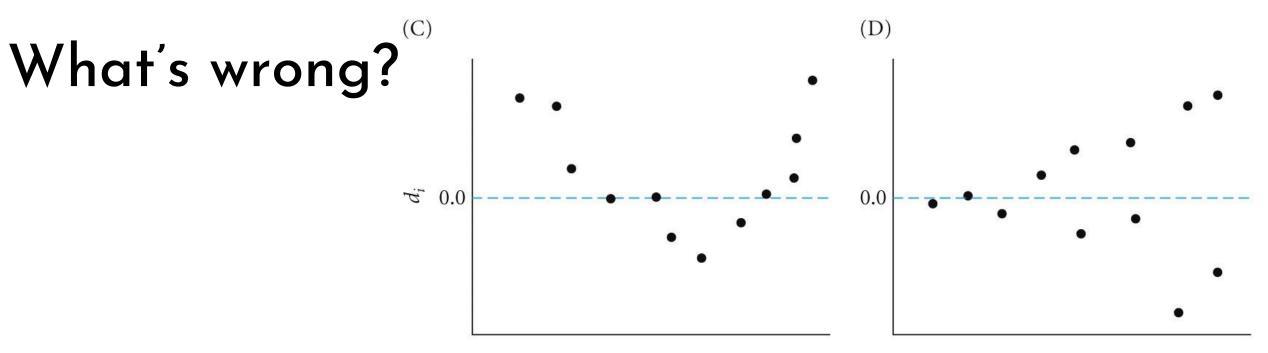
Residual vs. fitted (assumption 3 and 4)

- Residuals are normal
 - Approx. same height above/below 0-line
- Residuals have equal variance
 - Equal distribution across fitted values
 - No apparent pattern



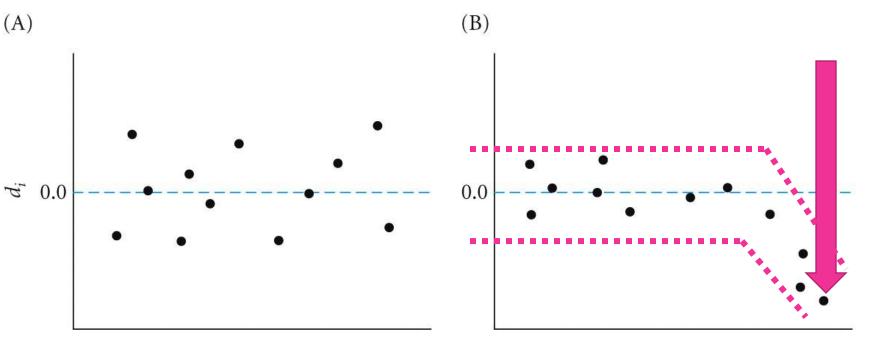
Residual vs. Fitted plots:

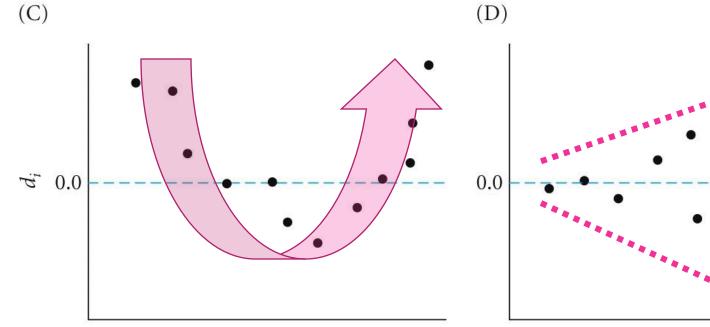




What's wrong?

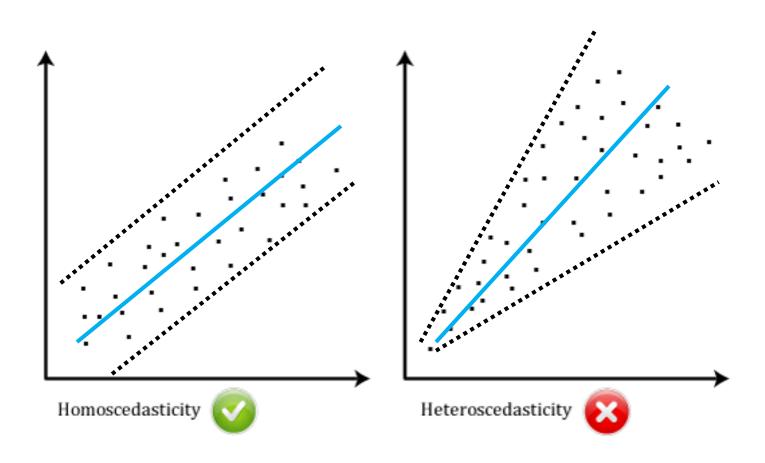
- B: "drop" at high fitted values
 - Unequal distance above/below 0line
- C: "U" pattern
- D: "Fan" pattern





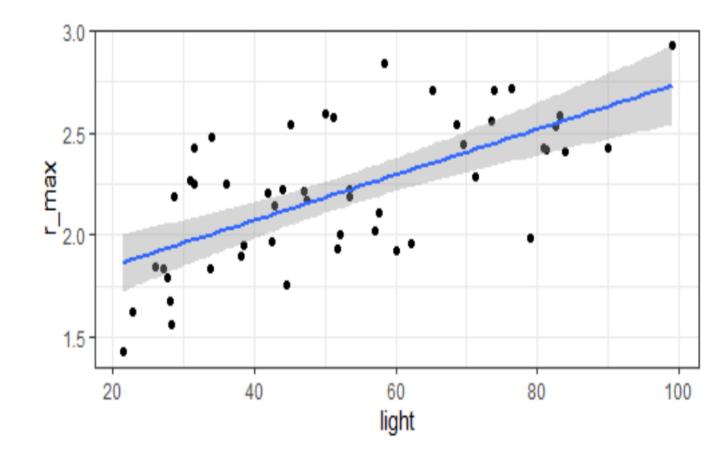
Constant Variance Along Regression Line (Assumption 4)

- Plot regression line
 + raw data points
- Points should be ~ same distance from regression line across x-axis



Line of best fit to ggplot()

ggplot(df, aes(x = light, $y = r_max) +$ geom_point() + geom_smooth(method = "lm") +theme bw()



Looking forward

- Linear Regression lab on Wednesday
- Friday is open for Homework questions