Factorial ANOVA

Spring 2023

Outline

- Factors
- Study Design
 - T-test
 - ANOVA
 - Factorial
- Blocking
 - Latin Square

Factors

- Research Questions often interested in more than one independent variable.
- Example
 - Effect of Fertilizer vs. No Fertilizer
 - Effect of different fertilizers: Nitrogen, Phosphorous, no fertilizer
 - Effect of types of fertilizer: Animal manure, synthetic liquid Nitrogen/Phosphorous, slow-release pellets.... Etc.

Factors and levels

- Factors are the predictor variables
- Different values of factors are the *levels*
- Examples:

Levels

	<u> </u>					
	Nitrogen	Irrigation	Species	Predators	Temperature	
٢	None	None	G. scandens	Control	Ambient	
J	Low	Uniform	G. Fortis	Exclusion	+1C	
	Medium	Supplemental	G. Fuliginosa	Addition	+2 C	
L	High		G. Difficilis		+5 C	

Factors

Basic study design

- Minimize (eliminate) all variation except for main factor testing
- Treat all units the same, only modify the factor of interest.
- Control treatments
- Random assignment to treatment level

Experimental design: T-test

- One factor, two levels
- Multiple replicates
- Example:
 - Does Competition slow growth of *Daphnia*?
 - Factor: Competition
 - Levels:
 - None (control); 0
 - Competitors; 1
 - Replicates = "cups" randomly assigned to treatment level

Analysis: are means different?

One-way ANOVA

- One factor, 2+ levels
- Multiple replicates
- Example:
 - Does Barnacle recruitment depend on substrate?
 - Factor: Substrate
 - Levels: different shades of blue
 - Replicates = each circle is a "plot" or replicate
 - Requires many more reps

A PRIMER OF ECOLOGICAL STATISTICS 2e, Figure 7.5 (Part 1) © 2013 Sinauer Associates, Inc.

One-way analysis

- Model: y ~ factor
- All means are equal (top panel)
- Or at least one mean is different (bottom panel)

One-way ANOVA table

- Group is the factor of interest
- Low p-value, factor is significant
- At least one mean in the **Group** is different

Factorial ANOVA

- Multiple factors, <u>></u> 2 levels
- Does Barnacle recruitment depend on substrate AND predation?
- Factors:
 - Substrate: different shades of blue
 - Predation: shape outline
- As factors and levels increase, need many, many more replicates
 - Regression design usually better option (more on this later

Factorial analysis

- Model: y ~ factor_A + factor_B
- Main effect of A (detergent) and B (temperature) assessed separately
- Effect of one factor while controlling for effect of other factor

Factorial analysis

- Main effect of A (detergent) and B (temperature) assessed separately
- Effect of one factor while controlling for effect of other factor
- Analyze both factors at once, pools variation
- **NOT** the same as running two separate one-way ANOVAs

Two Factor ANOVA table

anova(crop_lm)

```
## Analysis of Variance Table
##
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## density 1 5.1217 5.1217 15.3162 0.0001741 ***
## fertilizer 2 6.0680 3.0340 9.0731 0.0002533 ***
## Residuals 92 30.7645 0.3344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Main effect of A (density) and B (fertilizer)
- Both are significant, when controlling for impact of the other
- No information on how they're different, coefficient estimates, etc. (Need lm() or other analysis for that)

Multiple Factors, Multiple levels

- Factorial analyses are essentially limitless
- However, replicates for more complicated designs quickly become limiting

Multiple Factor ANOVA table

```
## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
## density 1 5.1217 5.1217 15.2238 0.0001840 ***
## fertilizer 2 6.0680 3.0340 9.0184 0.0002693 ***
## block 2 0.4861 0.2431 0.7225 0.4883291
## Residuals 90 30.2784 0.3364
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Assess the overall effect of each factor
- Results are only based on including other factors in model
 - Look at previous 2-factor table (w/o block), statistics are slightly different

What about confounding factors?

- Factor of interest: what we're testing or manipulating
 i.e., Fertilizer
- Confounding factors: natural variation across experimental units or plots.
- Example:
 - Plot gradient, dry to wet
 - Elevation gradient
 - Temperature gradient

Confounding Variables

	• •
	• •
• •	• •

A PRIMER OF ECOLOGICAL STATISTICS 2e, Figure 6.8

© 2013 Sinauer Associates, Inc.

Moisture Gradient

⁻emp. Gradient

Controlling for confounding factors

- Blocking factors
- Groups organized based on known (or unknown) confounding variables.

(A) Valid blocking

Low elevation

•	• •	•
•		•
•		•
Warmer		Cooler

A PRIMER OF ECOLOGICAL STATISTICS 2e, Figure 6.7 © 2013 Sinauer Associates, Inc.

Controlling for confounding factors

- Randomized Complete Block Design (RCBD)
- Block = rectangle (Right) or Row (Bottom)
- All treatment levels present in each block, each block replicated
- Model: Y ~ Factor + Block

	Rep I	Rep II	Rep III
Block 1	Group A	Group C	Group B
Block 2	Group C	Group B	Group A
Block 3	Group B	Group A	Group C

A PRIMER OF ECOLOGICAL STATISTICS 2e, Figure 7.6 (Part 1) © 2013 Sinauer Associates, Inc.

Invalid Blocks

• Why?

Low elevation

Invalid Blocks

- Why?
- Treatment levels may be grouped at one elevation by chance

Low elevation

High elevation

Invalid Blocks

- Why?
- Treatment levels may be grouped at one elevation by chance

Low elevation

Special blocked designs

- Double-blocks: Latin Square
- Moisture gradient L to R
- Temp. gradient Top to Bottom
- Each level appears once in each row and column (no replication)
- Powerful design to test 2- or 3-factors, no interaction possible

Rows	Columns				
	1	2	3	4	
1	A	В	С	D	
2	В	С	D	A	
3	С	D	A	В	
4	D	Α	В	С	
4×4 Latin Sauare Desian					

Latin square for 3-factors of interest

- Response = Yield
- "Rows" = fertilizer mix
- "Columns" = tillage method
- Treatment = "cells"

Model: y ~ treatment + row + column

Latin square ANOVA table

```
## Analysis of Variance Table
##
## Response: l_decrease
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 7 62.904 8.9862 51.5196 < 2e-16 ***
## rowpos_f 7 2.768 0.3955 2.2672 0.04726 *
## colpos_f 7 0.850 0.1214 0.6960 0.67498
## Residuals 42 7.326 0.1744
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

- Hactors: Treatment***, rowpos_t*, colpos_f (NS)
- Which row the plot was in did have an effect. **Treatment** also had an effect, when controlling for the effect of row position.